

easi

easi is a library for the Easy Initialization of models in three (or less or more) dimensional domains.
The purpose of easi is to evaluate functions \(f:\mathbb{R}^m\rightarrow \mathbb{R}^n\),
which are described in a YAML [http://yaml.org] configuration file.
In grid-based simulation software, such as SeisSol [http://www.seissol.org],
easi may be used to define models.
In SeisSol, the function f maps every point in space (say x,y,z) to a vector of parameters (e.g. ρ, μ, and λ),
which define a rheological model.
Here, over 5000 lines of model-specific Fortran code could be replaced with YAML files.

An easi model consists of only two components: Map and Filter.
These components may be wired as a tree, e.g. as in the following figure:

[image: _images/tree.png]
The procedure is as follows:
A point x,y,z enters the tree at the root.
The first Map takes a 3-dimensional vector as input and returns a n-dimensional vector.
The following Filters decide if they accept this n-dimensional vector or reject it (e.g. accept if it lies in a hypercube and reject otherwise).
Then, the branch which accepts a vector is taken (a Map accepts everything by default).
The final parameter vector is, in this example, always 3-dimensional as it contains the density and the Lamé parameters.

Contents

	Getting Started with easi
	Dependencies

	Usage example

	Application example

	Components
	Composite components

	Maps
	ConstantMap

	IdentityMap

	AffineMap

	PolynomialMap

	FunctionMap

	ASAGI

	SCECFile

	EvalModel

	OptimalStress

	AndersonianStress

	STRESS_STR_DIP_SLIP_AM (deprecated)

	SpecialMap

	Filters
	Any

	AxisAlignedCuboidalDomainFilter

	SphericalDomainFilter

	GroupFilter

	Switch

	Builders
	LayeredModel

	Include

	Glossary

Getting Started with easi

easi is a header-only library written in C++11.
Hence, one simply needs
(Only unit tests must be compiled with CMake.)

Dependencies

Easi depends on the following two projects:

	ImpalaJIT [https://github.com/uphoffc/ImpalaJIT]

	yaml-cpp [https://github.com/jbeder/yaml-cpp]

Make sure to link against these libraries when using easi.

Usage example

easi is configured via YAML [http://yaml.org] configuration files.
For example, such a configuration file could look like the following:

!Any
components:
 - !AxisAlignedCuboidalDomainFilter
 limits:
 x: [-100000, 100000]
 y: [-5000, 5000]
 z: [-100000, 10000]
 components:
 - !ConstantMap
 map:
 lambda: 1e10
 mu: 2e10
 rho: 5000
 - !LayeredModel
 map: !AffineMap
 matrix:
 z: [0, 0, 1]
 translation:
 z: 0
 interpolation: linear
 parameters: [rho, mu, lambda]
 nodes:
 -100.0: [2300.0, 0.1766e10, 0.4999e10]
 -300.0: [2300.0, 0.6936e10, 1.3872e10]
 -1000.0: [2600.0, 1.3717e10, 1.8962e10]
 -3000.0: [2700.0, 2.1168e10, 2.7891e10]
 -6000.0: [2870.0, 3.1041e10, 3.8591e10]
 -31000.0: [3500.0, 3.9847e10, 4.3525e10]
 -50000.0: [3200.0, 6.4800e10, 6.5088e10]

Here, all points with y-coordinate inbetween -5 km and +5 km would be
assigned constant model parameters. For all other points, a linear
interpolation, depending on the z-coordinate is used.

Application example

The first step is always to create a model.
Here, we may use the YAMLParser class which creates models from YAML configuration files.

	1
2

	easi::YAMLParser parser(3);
easi::Component* model = parser.parse("test.yaml");

The argument in YAMLParser’s constructor is the dimension of the input vectors.
Here, we take 3 as we want to query our model in a 3-dimensional space.

As a next step, we need to define a query, which defines the input vectors
for which we want to evaluate our model.
In the following example we add the points (1,2,3) and (2,3,4).
Each point may have an additional group parameter, which may be used
to distinguish points in an easi file.

easi::Query query(2,3);
query.x(0,0) = 1.0;
query.x(0,1) = 2.0;
query.x(0,2) = 3.0;
query.group(0) = 1;
query.x(1,0) = 2.0;
query.x(1,1) = 3.0;
query.x(1,2) = -4.0;
query.group(1) = 1;

We need to store the output vectors somewhere.
For this purpose, we always need to supply an adapter, which connects
the output vector with locations in memory.
In our sample application, the output vector shall be stored as array of
structs, and hence we use an ArrayOfStructsAdapter.
(Note that additional adapters can be implemented by overriding the class ResultAdapter.)

struct ElasticMaterial {
 double lambda, mu, rho;
};

ElasticMaterial material[2];
easi::ArrayOfStructsAdapter<ElasticMaterial> adapter(material);
adapter.addBindingPoint("lambda", &ElasticMaterial::lambda);
adapter.addBindingPoint("mu", &ElasticMaterial::mu);
adapter.addBindingPoint("rho", &ElasticMaterial::rho);

Finally, a simple call to evaluate is sufficient, and the model should be
deleted if is not required anymore.

model->evaluate(query, adapter);
delete model;

The whole sample code is listed in the following:

#include <iostream>
#include "easi/YAMLParser.h"
#include "easi/ResultAdapter.h"

struct ElasticMaterial {
 double lambda, mu, rho;
};

int main(int argc, char** argv)
{
 easi::Query query(2,3);
 query.x(0,0) = 1.0;
 query.x(0,1) = 2.0;
 query.x(0,2) = 3.0;
 query.group(0) = 1;
 query.x(1,0) = 2.0;
 query.x(1,1) = 3.0;
 query.x(1,2) = -4.0;
 query.group(1) = 1;

 easi::YAMLParser parser(3);
 easi::Component* model = parser.parse("test.yaml");

 ElasticMaterial material[2];
 easi::ArrayOfStructsAdapter<ElasticMaterial> adapter(material);
 adapter.addBindingPoint("lambda", &ElasticMaterial::lambda);
 adapter.addBindingPoint("mu", &ElasticMaterial::mu);
 adapter.addBindingPoint("rho", &ElasticMaterial::rho);

 model->evaluate(query, adapter);

 delete model;

 for (unsigned j = 0; j < 2; ++j) {
 std::cout << material[j].lambda << " " << material[j].mu << " " << material[j].rho << std::endl;
 }

 return 0;
}

Components

In the following is a list of all components currently available in
easi.

Every component has a domain m and a codomain n which can be thought
of as a function \(f:\mathbb{R}^m \rightarrow \mathbb{R}^n\).
That is, a component accepts vectors in \(\mathbb{R}^m\) and
passes vectors in \(\mathbb{R}^n\) to its child components
(or as a result).
The dimensions are labeled and a childs input dimensions must match
its parent’s output dimensions.

Composite components

Each composite may have a sequence of child components. Composite itself
is abstract and may not be instantiated.
Maps and Filters are always composite, builders are not.

!ABSTRACT
components:
 - <Component>
 - <Component>
 - ...

example [https://github.com/SeisSol/easi/blob/master/examples/1_groups.yaml]

Alternative for composites with a single child:

!ABSTRACT
components: <Component>

Remark: Composites must of at least one child component.

Maps

A map allows to map vectors from \(\mathbb{R}^m\) to \(\mathbb{R}^n\).

ConstantMap

Assigns a constant value, independent of position.

!ConstantMap
map:
 <dimension>: <double>
 <dimension>: <double>
...

	Domain

	inherited

	Codomain

	keys in map

	Example

	0_constant [https://github.com/SeisSol/easi/blob/master/examples/0_constant.yaml]

IdentityMap

Does nothing in particular (same as !Any).

!IdentityMap

	Domain

	inherited

	Codomain

	domain

AffineMap

Implements the affine mapping \(y=Ax+t\).

!AffineMap
matrix:
 <dimension>: [<double>, <double>, ...]
 <dimension>: [<double>, <double>, ...]
 ...
translation:
 <dimension>: <double>
 <dimension>: <double>
 ...

	Domain

	inherited

	Codomain

	keys of matrix / translation

	Example

	Say we have a row in matrix which reads “p: [a,b,c]”, and a
corresponding row in translation “p: d”.
Furthermore, assume rho, mu, and lambda are the input dimensions.
Then \(p = a\cdot\lambda + b\cdot\mu + c\cdot\rho + d.\)

3_layered_linear [https://github.com/SeisSol/easi/blob/master/examples/3_layered_linear.yaml]

By convention, the input dimensions are ordered lexicographically
(according to the ASCII code, i.e. first 0-9, then A-Z, and then a-z),
hence the first entry in a matrix row corresponds to the the first input
dimension in lexicographical order.

PolynomialMap

Assigns a value using a polynomial for every parameter.

!PolynomialMap
map:
 # x^n, ..., x, 1
 <dimension>: [<double>, ..., <double>, <double>]
 <dimension>: [<double>, ..., <double>, <double>]
 ...

	Domain

	inherited but may only be a one dimension

	Codomain

	keys in map

	Example

	62_landers [https://github.com/SeisSol/easi/blob/master/examples/62_landers.yaml#L35]

FunctionMap

Implements a mapping described by an ImpalaJIT function.

!FunctionMap
map:
 <dimension>: <function_body>
 <dimension>: |
 <long_function_body>
 ...

	Domain

	inherited

	Codomain

	keys in map

	Example

	Input dimensions are x,y,z. Then “p: return x * y * z;”
yields \(p = x \cdot y \cdot z\).
(Note: Don’t forget the return statement.)

5_function [https://github.com/SeisSol/easi/blob/master/examples/5_function.yaml]

The <function_body> must an be ImpalaJIT function (without surrounding curly braces).
The function gets passed all input dimensions automatically.

Known limitations:

	No comments (// or /* */)

	No exponential notation (use pow(10.,3.) instead of 1e3)

	No ‘else if’ (use else { if () {}}).

ASAGI

Looks up values using ASAGI (with trilinear interpolation).

!ASAGI
file: <string>
parameters: [<parameter>,<parameter>,...]
var: <string>
interpolation: (nearest|linear)

	Domain

	inherited

	Codomain

	keys in parameters

	Example

	101_asagi [https://github.com/SeisSol/easi/blob/master/examples/101_asagi.yaml]

	file

	Path to a NetCDF file that is compatible with ASAGI

	parameters

	Parameters supplied by ASAGI in order of appearance in
the NetCDF file

	var

	The NetCDF variable which holds the data (default: data)

	interpolation

	Choose between nearest neighbour and linear interpolation (default: linear)

SCECFile

Looks up fault parameters in SCEC stress file (as in
http://scecdata.usc.edu/cvws/download/tpv16/TPV16_17_Description_v03.pdf).

!SCECFile
file: <string>
interpolation: (nearest|linear)

	Domain

	inherited, must be 2D

	Codomain

	cohesion, d_c, forced_rupture_time, mu_d, mu_s, s_dip, s_normal, s_strike

	Example

	example [https://github.com/SeisSol/easi/blob/master/examples/f_16_scec.yaml#L8]

	file

	Path to a SCEC stress file

	interpolation

	Choose between nearest neighbour and linear interpolation (default: linear)

EvalModel

Provides values by evaluating another easi tree.

!EvalModel
parameters: [<parameter>,<parameter>,...]
model: <component>
... # specify easi tree
components: <component>
... # components receive output of model as input

	Domain

	inherited

	Codomain

	keys of parameters

	Example

	120_initial_stress [https://github.com/SeisSol/easi/blob/9e93f35fbacc950d00534643c59a64dff306a381/examples/120_initial_stress.yaml#L19]:
[b_xx, b_yy, b_zz, b_xy, b_yz, b_xz] are defined through the
component “!STRESS_STR_DIP_SLIP_AM”, which depends itself on several
parameters (mu_d, mu_s, etc). One of these parameter “strike” is set
to vary spatially through an “!AffineMap”. “!EvalModel” allows to
evaluate this intermediate variable before executing the
“!STRESS_STR_DIP_SLIP_AM” component.

OptimalStress

This function allows computing the stress which would result in faulting
in the rake direction on the optimally oriented plane defined by strike
and dip angles (this can be only a virtual plane if such optimal
orientation does not correspond to any segment of the fault system). The
principal stress magnitudes are prescribed by the relative prestress
ratio R (where \(R=1/(1+S)\)), the effective confining stress
(effectiveConfiningStress \(= Tr(sii)/3\)) and the stress shape ratio
\(s2ratio = (s_2-s_3)/(s_1-s_3)\), where \(s_1>s_2>s_3\) are the principal stress
magnitudes, following the procedure described in Ulrich et al.
(2019), methods section ‘Initial Stress’. To prescribe R, static and dynamic friction
(mu_s and mu_d) as well as cohesion are required.

components: !OptimalStress
 constants:
 mu_d: <double>
 mu_s: <double>
 strike: <double>
 dip: <double>
 rake: <double>
 cohesion: <double>
 s2ratio: <double>
 R: <double>
 effectiveConfiningStress: <double>

	Domain

	inherited

	Codomain

	stress components (s_xx, s_yy, s_zz, s_xy, s_yz, and s_xz)

AndersonianStress

This function allows computing Andersonian stresses (for which one principal axis of the stress tensor is vertical).

The principal stress orientations are defined by SH_max (measured from North, positive eastwards), the direction of maximum horizontal compressive stress.

S_v defines which of the principal stresses \(s_i\) is vertical where \(s_1>s_2>s_3\).
S_v = 1, 2 or 3 should be used if the vertical principal stress is the maximum, intermediate or minimum compressive stress.
Assuming mu_d=0.6, S_v = 1 favours normal faulting on a 60° dipping fault plane striking SH_max,
S_v = 2 favours strike-slip faulting on a vertical fault plane making an angle of 30° with SH_max and
S_v = 3 favours reverse faulting on a 30° dipping fault plane striking SH_max.

The principal stress magnitudes are prescribed by the relative fault strength S (related to the relative prestress ratio R by \(R=1/(1+S)\)),
the vertical stress sig_zz and the stress shape ratio
\(s2ratio = (s_2-s_3)/(s_1-s_3)\), where \(s_1>s_2>s_3\) are the principal stress
magnitudes, following the procedure described in Ulrich et al.
(2019), methods section ‘Initial Stress’. To prescribe S, static and dynamic friction
(mu_s and mu_d) as well as cohesion are required.

components: !AndersonianStress
 constants:
 mu_d: <double>
 mu_s: <double>
 SH_max: <double>
 S_v: <int (1,2 or 3)>
 cohesion: <double>
 s2ratio: <double>
 S: <double>
 sig_zz: <double>

	Domain

	inherited

	Codomain

	stress components (s_xx, s_yy, s_zz, s_xy, s_yz, and s_xz)

STRESS_STR_DIP_SLIP_AM (deprecated)

This routine is now replaced by the more complete and exact
‘OptimalStress’ routine. It is nevertheless preserved in the code for
being able to run the exact setup we use for the Sumatra SC paper (Uphoff
et al., 2017). It is mostly similar with the ‘OptimalStress’ routine,
but instead of a rake parameter, the direction of slip can only be pure
strike-slip and pure dip-slip faulting (depending on the parameter
DipSlipFaulting). In this routine the s_zz component of the stress
tensor is prescribed (and not the confining stress tr(sii)/3) as in
‘OptimalStress’.

components: !STRESS_STR_DIP_SLIP_AM
 constants:
 mu_d: <double>
 mu_s: <double>
 strike: <double>
 dip: <double>
 DipSlipFaulting: <double> (0 or 1)
 cohesion: <double>
 s2ratio: <double>

	Domain

	inherited

	Codomain

	stress components (s_xx, s_yy, s_zz, s_xy, s_yz, and s_xz)

	Example

	120_initial_stress [https://github.com/SeisSol/easi/blob/9e93f35fbacc950d00534643c59a64dff306a381/examples/120_initial_stress.yaml#L44]

SpecialMap

Evaluates application-defined functions.

!<registered-name>
constants:
 <parameter>: <double>
 <parameter>: <double>
 ...

	Domain

	inherited without constant parameters

	Codomain

	user-defined

	Example

	We want to create a function which takes three input parameters
and supplies two output parameters:

#include "easi/util/MagicStruct.h"

struct Special {
 struct in {
 double i1, i2, i3;
 };
 in i;

 struct out {
 double o1, o2;
 };
 out o;

 inline void evaluate() {
 o.o1 = exp(i.i1) + i.i2;
 o.o2 = i.i3 * o.o1;
 }
};

SELF_AWARE_STRUCT(Special::in, i1, i2, i3)
SELF_AWARE_STRUCT(Special::out, o1, o2)

Register this file with the parser:

easi::YAMLParser parser(3);
parser.registerSpecial<Special>("!Special");

And use it in the following way, e.g.:

!Special
constants:
 i2: 3.0

The domain of !Special is now i1, i3 and the codomain is o1, o2.
i2 is constant and has the value 3.

Filters

Filters accept only a subsets of points and allows for the spatial
partitioning of models.

Any

Any mostly serves as a root node and accepts every point and every
group.

!Any

	Domain

	inherited

	Codomain

	domain

	Example

	1_groups [https://github.com/SeisSol/easi/blob/3f5783097808c486962fe8fa253f7738db3cfacb/examples/1_groups.yaml#L1]

AxisAlignedCuboidalDomainFilter

Accepts only points inside an axis-aligned bounding box, i.e. when
\(l_x \leq x \leq u_x\) and \(l_y \leq y \leq u_y\) and …

!AxisAlignedCuboidalDomainFilter
limits:
 <dimension>: [<double>, <double>] # [l_x, u_x]
 <dimension>: [<double>, <double>] # [l_y, u_y]
 ...

	Domain

	codomain

	Codomain

	keys of limits

	Example

	f_103_scec [https://github.com/SeisSol/easi/blob/master/examples/f_103_scec.yaml#L28]

SphericalDomainFilter

Accepts only points inside a sphere, i.e. when \(\lVert x-c\rVert \leq r\).

!SphericalDomainFilter
radius: <double>
centre:
 <dimension>: <double>
 <dimension>: <double>
 ...

	Domain

	codomain

	Codomain

	keys of centre

GroupFilter

Accepts only points belonging to a set of groups.

!GroupFilter
groups: [<int>,<int>,...]

	Domain

	inherited

	Codomain

	domain

	Example

	120_sumatra [https://github.com/SeisSol/easi/blob/master/examples/120_sumatra.yaml#L7]

Switch

Can be used to use select a component based on the requested parameters.

!Switch
[<parameter>,<parameter>,...]: <component>
[<parameter>,<parameter>,...]: <component>
...

	Domain

	inherited

	Codomain

	domain

	Example

	120_sumatra [https://github.com/SeisSol/easi/blob/master/examples/120_sumatra.yaml#L1]:
[mu_d, mu_s, d_c] are defined with a !ConstantMap
and [cohesion, forced_rupture_time] are defined with a !FunctionMap.

The component on the right-hand side of the colon specifies a sub-model for the parameters on the
left-hand side of the colon.
The parameter lists must not intersect, as otherwise the sub-model, which shall be evaluated for
a parameter, would not be uniquely defined.

Builders

Builders are not components by itself, but build a subtree using
available components.

LayeredModel

Defines parameters at nodes, which are interpolated inbetween nodes.

!LayeredModel
map: <map> # Mapping to 1D (root component)
interpolation: (lower|upper|linear)
parameters: [<dimension>, <dimension>, ...] # order of dimension
nodes:
 <double>: [<double>, <double>, ...] # key: node position, value: dimension values
 <double>: [<double>, <double>, ...]
 ...

	Domain

	inherited, must be 1D

	Codomain

	length of coefficients sequence

	Interpolation methods

	
	lower

	Take the value of the lower (smaller) node

	upper

	Take the value of the upper (larger) node

	linear

	Linear interpolation

	Example

	3_layered_linear [https://github.com/SeisSol/easi/blob/master/examples/3_layered_linear.yaml]

Include

Includes another configuration file.

!Include <filename>

	Example

	f_120_sumatra [https://github.com/SeisSol/easi/blob/master/examples/f_120_sumatra.yaml#L24]

Glossary

	Domain and codomain

	The set of all permitted inputs to a given function is called the domain
of the function, while the set of permissible outputs is called the
codomain.

	Map

	A map transforms a m-dimensional input vector into an n-dimensional
output vector.

	Filter

	A filter is a boolean function which either accepts or rejects input vectors.

	Composite components

	A composite component is a component with attached components
(that is, a composite is the root of a tree).
Basically, it means that several components can be plugged to process
a chain of operations.
Maps and Filters are composite components, Builders are not.

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/tree.png
Evaluation (if/elseif/else)

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 easi

 		
 Getting Started with easi

 		
 Dependencies

 		
 Usage example

 		
 Application example

 		
 Components

 		
 Composite components

 		
 Maps

 		
 ConstantMap

 		
 IdentityMap

 		
 AffineMap

 		
 PolynomialMap

 		
 FunctionMap

 		
 ASAGI

 		
 SCECFile

 		
 EvalModel

 		
 OptimalStress

 		
 AndersonianStress

 		
 STRESS_STR_DIP_SLIP_AM (deprecated)

 		
 SpecialMap

 		
 Filters

 		
 Any

 		
 AxisAlignedCuboidalDomainFilter

 		
 SphericalDomainFilter

 		
 GroupFilter

 		
 Switch

 		
 Builders

 		
 LayeredModel

 		
 Include

 		
 Glossary

_static/up-pressed.png

_static/up.png

